Home | Looking for something? Sign In | New here? Sign Up | Log out

Wednesday, August 27, 2008

Laws of reflection

Wednesday, August 27, 2008
Reflection is the change in direction of a wave front at an interface between two different media so that the wave front returns into the medium from which it originated. Common examples include the reflection of light, sound and water waves.

Reflection of light may be specular (that is, mirror-like) or diffuse (that is, not retaining the image, only the energy) depending on the nature of the interface. Furthermore, if the interface is between dielectric-conductor or dielectric-dielectric media, the phase of the reflected wave may or may not be inverted, respectively.





A mirror provides the most common model for specular light reflection and consists of a glass sheet in front of a metallic coating where the reflection actually occurs. Reflection is enhanced in metals by suppression of wave propagation beyond their skin depths. It is also possible for reflection to occur from the surface of transparent media, such as water or glass. In the diagram, a light ray PO strikes a vertical mirror at point O, and the reflected ray is OQ. By projecting an imaginary line through point O perpendicular to the mirror, known as the normal, we can measure the angle of incidence, θi and the angle of reflection, θr. The law of reflection states that θi = θr, or in other words, the angle of incidence equals the angle of reflection.

In fact, reflection of light may occur whenever light travels from a medium of a given refractive index into a medium with a different refractive index. In the most general case, a certain fraction of the light is reflected from the interface, and the remainder is refracted. Solving Maxwell's equations for a light ray striking a boundary allows the derivation of the Fresnel equations, which can be used to predict how much of the light reflected, how much is refracted in a given situation. Total internal reflection of light from a denser medium occurs if the angle of incidence is above the critical angle. Total internal reflection is used as a means of focussing waves that cannot effectively be reflected by common means. X-ray telescopes are constructed by creating a converging "tunnel" for the waves. As the waves interact at low angle with the surface of this tunnel they are reflected toward the focus point (or toward another interaction with the tunnel surface, eventually being directed to the a detector at the focus). A conventional reflector would be useless as the X-rays would simply pass through the intended reflector. When light reflects off a material denser (with higher refractive index) than the external medium, it undergoes a 180° phase reversal. In contrast, a less dense, lower refractive index material will reflect light in phase. This is an important principle in the field of thin-film optics. Specular reflection at a curved surface forms an image which may be magnified or demagnified; curved mirrors have optical power. Such mirrors may have surfaces that are spherical or parabolic.

0 comments: